4 research outputs found

    Design of Mechanism and Preliminary Field Validation of Low-Cost, Passive Prosthetic Knee for Users With Transfemoral Amputation in India

    Get PDF
    An estimated 230,000 above-knee amputees in India are currently in need of prosthetic care, a majority of them facing severe socio-economic constraints. However, only few passive prosthetic knee devices in the market have been designed for facilitation of normative gait kinematics and for meeting the specific daily life needs of above-knee amputees in the developing world. Based on the results of our past studies, this paper establishes a framework for the design of a low-cost prosthetic knee device, which aims to facilitate able-bodied kinematics at a low metabolic cost. Based on an exhaustive set of functional requirements, we present a prototype mechanism design for the low-cost prosthetic knee. The mechanism is implemented using an early stance lock for stability and two friction dampers for achieving able-bodied kinematics and kinetics of walking. For early-stage validation of the prosthesis design, we carry out a preliminary field trial on four above-knee amputees in India and collect qualitative user feedback. Future iterations of the mechanism prototype will incorporate an additional spring component for enabling early stance flexion-extension.Massachusetts Institute of Technology. Tata Center for Technology and Desig

    The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-bodied Kinematics

    Get PDF
    There is a major need in the developing world for a low-cost prosthetic knee that enables users to walk with able-bodied kinematics and low energy expenditure. To efficiently design such a knee, the relationship between the inertial properties of a prosthetic leg and joint kinetics and energetics must be determined. In this paper, using inverse dynamics, the theoretical effects of varying the inertial properties of an above-knee prosthesis on the prosthetic knee moment, hip power, and absolute hip work required for walking with ablebodied kinematics were quantified. The effects of independently varying mass and moment of inertia of the prosthesis, as well as independently varying the masses of each prosthesis segment, were also compared. Decreasing prosthesis mass to 25% of physiological leg mass increased peak late-stance knee moment by 43% and decreased peak swing knee moment by 76%. In addition, it reduced peak stance hip power by 26%, average swing hip power by 76%, and absolute hip work by 22%. Decreasing upper leg mass to 25% of its physiological value reduced absolute hip work by just 2%, whereas decreasing lower leg and foot mass reduced work by up to 22%, with foot mass having the greater effect. Results are reported in the form of parametric illustrations that can be utilized by researchers, designers, and prosthetists. The methods and outcomes presented have the potential to improve prosthetic knee component selection, facilitate ablebodied kinematics, and reduce energy expenditure for users of low-cost, passive knees in developing countries, as well as for users of advanced active knees in developed countries.MIT Department of Physics Pappalardo Program (Fellowship)Massachusetts Institute of Technology. Public Service CenterMassachusetts Institute of Technology. Research Support CommitteeNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)MIT Tata Center for Technology and Desig

    The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees

    Get PDF
    Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R[superscript 2]=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg

    Proof-of-Concept Evaluation of a Low-Cost and Low-Weight Tractor for Small-Scale Farms

    No full text
    About 80% of farms in India are less than five acres in size and are cultivated by farmers who use bullocks for farming operations. Even the smallest tractors available in the Indian market are too expensive and large, and not designed to meet the unique requirements of these farmers. To address these needs, we have developed a proof-of-concept lightweight (350 kg) tractor in collaboration with Mahindra and Mahindra Limited, an Indian tractor manufacturer. Given the challenges of accurately predicting traction in Indian soils by applying existing terramechanics models, an alternative design approach based on Mohr-Coulomb soil-failure criterion is presented. Analysis of weight, power and drawbar of existing tractors on the market, a single wheel traction test, and a drawbar test of a proof-of-concept small tractor prototype suggest that ~200kg is the maximum drawbar force that could be achieved by a 350kg tractor of conventional design. In order to attain higher drawbar performance of 70% of the tractor weight needed for specific agricultural operations, additional design changes are required. An approach for increasing traction by adding tires is investigated and discussed. Additional research on weight distribution, dynamic drawbar testing and tread design is suggested as future work.MIT Tata Center for Technology and DesignMahindra Limite
    corecore